	
	
	

	
	
	

	
	

General Style and Coding Standards

for Software Projects

Preliminary Version
Table Of Contents

4

1. Objectives/Overview

2. Scope
4

3. References
5

4. Outstanding Issues
5

5. Approvals
6

6. Responsibilities
6

7. Inputs
6

8. Outputs
6

9. Control Mechanisms
6

10.
6

10.1 Relation between this and other Coding Standard Documents:
7

10.2 Terms Used In This Document
7

10.3 The Emotional Topic of Coding Standards
7

11. Project Dependent Standards
8

12. FILE and MODULE GUIDELINES
9

12.1 Module Design Guidelines
9

12.2 Header (Include) Files
9

12.3 Source File Layout Guideline
10

12.4 File Naming Guideline
10

12.5 File Informational Headers
10

12.6 Program Unit Header
11

13. Subroutines
12

13.1 Subroutine Scope Guideline
12

13.2 Subroutine Declaration Guidelines:
12

13.3 Subroutine Layout Guidelines:
12

13.4 Subroutine Size Guideline
12

13.5 Parameter List Guideline
12

13.6 Variable Declaration Guidelines:
13

14. Comments
13

14.1 “Distributed Code Description “
13

14.2 Comment Block Standard:
13

14.3 In line comments:
14

14.4 Commenting control constructs
14

15. Code Layout
14

15.1 One statement per line
14

15.2 Indentation Guidelines
14

15.3 Brackets, Begin...End, and Delimiting Control Blocks
15

16. Naming Convention for Identifiers (Variables, Constants, and Subroutines)
16

16.1 Summary table for Naming Convention:
16

16.2 Select Clear and Meaningful Names
17

16.3 Use of upper/lower case and underscores to differentiate Subroutines, Variables, and Constants.
18

16.4 Use of prefix (Hungarian) notations to differentiate the scope and type of a data variable
18

16.5 Abbreviations
23

16.6 Naming convention for Windows based languages:
Error! Bookmark not defined.

17. Misc. Rules for Coding
24

17.1 Constants and Macros
24

17.2 Global Data Guidelines
24

17.3 Error Handling
25

17.4 Conditionals and comparisons
25

17.5 Program Flow
26

17.6 Binding time of variables and values
26

17.7 Go-to’s, pointers, and issues of clarity
26

17.8 Strive to develop clear code
27

17.9 Use libraries when available
27

17.10 Type casting integer and float variables makes code more portable
27

17.11 Compiler dependent code should include tests
27

17.12 Use ASCII files for runtime or machine dependent constants and macros
27

17.13 Debugging
Error! Bookmark not defined.

17.14 Using structures and enumerators is recommended
Error! Bookmark not defined.

18. Modularization and Information Hiding
27

18.1 Information Hiding , domain, and scope of variables
27

18.2 Low Coupling , High Cohesion, and Clean interfaces
28

18.3 Cohesion
28

18.4 Coupling
28

18.5 Clean Interface
28

18.6 Minimize scope of variables
28

1. Objectives/Overview

The goal of these guidelines is to create uniform coding habits among software personnel so that reading, checking, and maintaining code written by different persons becomes easier. The intent of these standards is to define a natural style and consistency, yet leave to the authors of source code, the freedom to practice their craft without unnecessary burden.

When a project adheres to common standards many good things happen:

 Programmers can go into any code and figure out what’s going on, so maintainability, readability, and reusability are increased. Code walk throughs become less painful.

 New people can get up to speed quickly.

 People new to a language are spared the need to develop a personal style and defend it to death.

 People new to a language are spared making the same mistakes over and over again, so reliability is increased.

 People make fewer mistakes in consistent environments.

 Idiosyncratic styles and college-learned behaviors are replaced with an emphasis on business concerns - high productivity, maintainability, shared authorship, etc.

Experience over many projects points to the conclusion that coding standards help the project to run smoothly. They aren’t necessary for success, but they help. Most arguments against a particular standard come from the ego. Few decisions in a reasonable standard really can be said to be technically deficient, just matters of taste. So, in the interests of establishing a showcase software development environment, be flexible, control the ego a bit, and remember any project is a team effort.

A mixed coding style is harder to maintain than a bad coding style. So it’s important to apply a consistent coding style across a project. When maintaining code, it’s better to conform to the style of the existing code rather than blindly follow this document or your own coding style.

Since a very large portion of project scope is after-delivery maintenance or enhancement, coding standards reduce the cost of a project by easing the learning or re-learning task when code needs to be addressed by people other than the author, or by the author after a long absence. Coding standards help ensure that the author need not be present for the maintenance and enhancement phase.

2. Scope

This document describes general software coding standards for code written in any text based programming language (including high-level languages like C, C++, Basic, Visual Basic, and assembler languages). Many of the guidelines described in this document can be directly applied to programming practices in graphical based languages (such as PLC, graphical, and visual languages). This will be used as the base document for several language specific coding standard documents. Each language specific coding standard will be written to expand on these concepts with specific examples, and define additional guidelines unique to that language.

For each project, this document will be used in conjunction with language and project specific coding standards that, in total define a complete set of coding standards. A description of the general, language specific, and project specific coding standards is provided below:

3. References

3.1 VBGUIDE.DOC
Microsoft Visual Basic Coding Standards from Microsoft Developers Network; Jan 1997

3.2 Programming Integrated Solutions with Microsoft Office, Appendix B, Visual Basic Variable Naming and Coding Standards.

3.3 Recommended C Style and Coding Standards Revision 6.0 (This is an updated version of a document from a committee formed at AT&T’s Indian Hill Labs. It’s internet location is: http://www.cs.huji.ac.il/papers/cstyle.html)

3.4 Steve McConnell, Code Complete, Microsoft Press 1996 (ISBN 1-55615-484-4)

3.5 Writing Solid Code, Steve McConnell, Microsoft Press 1996 (ISBN 1-55615-551-4)

3.6 A Modest Software Standard, Jack G. Ganssle, March 1996 Embedded Systems Programming

3.7 C coding Guidelines, Real Time Enterprises, Inc. Rev 7, 6/24/96

3.8 C++ Guidelines (companion document to C coding guidelines), Real Time Enterprises, Inc., Rev 0 11/8/1995

3.9 C style and Coding Standards for the SDM Project, ROUGH DRAFT, July 3, 1995 (http://www-c8.lanl.gov/sdm/DevelopmentEnv/SDM_C_Style_Guide.hyml

3.10 C++ Style Guide, Internal Generic Co., 6/22/90, Software Warehouse index # 201

3.11 Using Visual Basic for Applications (Appendix D- Style Guide for Professional Quality Code), QUE, (ISBN 1-56529-725-3)

3.12 Speaking the Language of the PM API, Part 4 (Overview of Hungarian Notation), PC Magazine March 14, 1989)

3.13 Programming Integrated Solutions with Microsoft Office, Appendix B, Visual Basic Variable Naming and Coding Standards.

4. Outstanding Issues

1. This document needs to be reviewed, updated, and approved.

2. This document was written to be consistent with all text based languages. It hasn’t been updated to be consistent with the C++ language. We need agree on a consistent naming convention across our coding standard documents. Some differences include:

 function naming (use of underscore between words)

 Hungarian Prefixes (e.g. should the prefix for integer be “int” , “i”, or “n”)

 Naming conventions for object oriented languages (objects, classes, member functions, ...)

3. Better definition of relation between General coding standards & language specific coding standards, and how to use on a project is needed?

4. Passive vs. Active tense

This document contains a mixture of active and passive verb tense, which could be cleaned up. E.g.:

Minimize scope by declaring subroutines used only within the module as “static”

The subroutine’s return type should be declared (do not allow the compiler to select a default value).

5. “C” language specifics

This document is organized around and contains many C language specific sections and examples. However, putting all of the C-specific detail in the C-specific appendix document and trying to make this document totally generic may make it too abstract to be a usable guideline. Perhaps a mention in the introduction about the use of C examples to demonstrate the concepts would suffice.

6. Textual vs. graphical languages

Some of the description of scope vs. content of this document is inconsistent, particularly in reference to textual vs. graphical languages. Much of the introduction applies to both. Is the intent to repeat this in a “General Graphical Language Guideline” document separate from this? Or should the general document have different sections when there are unique textual or unique graphical language issues? A suggestion might be to make the common issues visible in this document, and elaborate as necessary on some details as applies to textual languages and/or graphical languages and/or specific languages, perhaps keeping the elaboration portions separate or easily distinguishable from the main points. (One potential idea is a two-column format with the global issues on the left side and specifics or examples on the right side, so that one can scan the document quickly without having to read through all the details, but still have access to the detail or specific examples for clarification when necessary.)

5. Approvals

5.1 Software Project’s Development Manager

6. Responsibilities

6.1 The Project Manager is responsible for updating the Coding Standard or waiving adherence to the standards in specific cases.

6.2 Each Programmer is responsible for ensuring that his/her code follows the Coding Standard.

6.3 Programmers are responsible for checking adherence to the Coding Standard during code inspections.

7. Inputs

(none)

8. Outputs

(none)

9. Control Mechanisms

TBD.

10. Relation between this and other Coding Standard Documents:

Each project shall adopt coding standards. :

General Coding Standard: (described in this document).

This will be used as the base document for text based programming languages.

Language specific coding standards:

Each language specific coding standard will be written to expand on the concepts captured in this document with specific examples, and define additional guidelines unique to that language.. These language standards shall supplement, rather than override, the General Coding standards as much as possible.

Project Coding Standards.

These standards shall be based on the coding standards in this document and on the coding standards for the given language(s). The project coding standards should supplement, rather than override, the General Coding standards and the language coding standards. Where conflicts between documents exist, the project standard shall be considered correct. Sweeping per-project customizations of the standards are discouraged, so that code can be reused from one project to another with minimal change.

10.1 Terms Used In This Document

 The term “program unit” (or sometimes simply “unit”) means a single function, procedure, subroutine or, in the case of various languages, an include file, a package, a task, a Pascal unit, etc.

 A “function” is a program unit whose primary purpose is to return a value.

 A “procedure” is a program unit which does not return a value (except via output parameters).

 A “subroutine” is any function or procedure.

 An “identifier” is the generic term referring to a name for any constant, variable, or program unit.

 A “module” is a collection of “units” that work on a common domain.

10.2 The Emotional Topic of Coding Standards

Please be patient with these coding standards until they become natural... it is only then that an honest opinion as to correctness or utility can be formed. They need not impede the feeling of craftsmanship that comes with writing software. Consider the common good. Embrace the decisions of the group.

10.3 A Limited Lifetime Warranty

If these standards - when used as directed - fail to perform as expected, they can be edited and adapted to changing environments, applications, business emphasis, and an ever-evolving industry. The spirit of this document, not its rules, should dictate the place of standards and consistency within and across projects.

10.4 I Never Learned This in School… Is This a Joke?

 You have to use some style, why not be consistent across the project?

 Individual styles are not best just because they’re individual.

 Individual styles are learned in a non-business environment (school?).

 Any style becomes natural after 100,000 lines.

 Syntax-based editors can be configured to do the mundane tasks

11. Project Dependent Standards

The standards and guidelines described in this document were selected on the basis of common coding practices of people within our group and from many language specific programming standard documents collected throughout Generic Co. and the Internet. They can’t be expected to be complete or optimal for each project and for each language. Individual projects may wish to establish additional standards beyond those given here and the language specific documents. Keep in mind that sweeping per-project customizations of the standards are discouraged in order to make it more likely that code throughout a project and across projects adopt similar styles.

This is a list of coding practices that should be standardized for each project, and may require additional specification or clarification beyond those detailed in the standards documents.

1. Naming conventions:

 What additional naming conventions should be followed. In particular, systematic prefix conventions for functional grouping of global data and also for names of structures, objects, and other data types may be useful.

1. Project specific contents of module and subroutine headers

2. File Organization:

 What kind of Include file organization is appropriate for the projects data hierarchy

 Directory structure

 Location of Make Files

(note: “Actions taken before compilation or assembly is performed” should be the directory in which the source code resides, unless otherwise specified.)

1. Specifications for Error Handling:

 specifications for the detection and handling of errors

 specifications for boundary condition checking for parameters passed to subroutines

1. Revision and Version Control: configuration of archives, projects, revision numbering, and release guidelines.

2. Guidelines for the use of “lint” or other code checking programs

3. Standardization of the development environment - compiler and linker options and directory structures.

12. FILE and MODULE GUIDELINES

12.1 Module Design Guidelines

All source code should be grouped into modules. Each module should deal with a single, unique domain. Deciding how to decompose a specific system into constituent modules can be complex and is not within the scope of this paper. However, emphasize simplicity, clarity, cohesion, and decoupling. In general, one source code file will contain the implementation of one module.

12.2 Header (Include) Files

If the language permits, header files are support files referenced by other files prior to compilation. Some, such as stdio.h are defined at the system level and must be included by any program using the standard I/O library. Header files are also used to contain data declarations and defines that are needed by more than one program. Header files should be functionally organized, i.e. declarations for separate subsystems should be in separate header files. Also, if a set of declarations is likely change when ported from one machine to another, those declarations should be in a separate header file. Any source file that uses the facilities made available by another module needs to include the associated header file.

12.2.1 Path names for header files

 Use relative (not absolute) path names for include files of source code being created by the project. This approach allows for the copying and compiling of project modules into different subdirectories without the need to change the contents of the source code.

C language example: #include “filename.h”, or “..\filename.h”

 For compiler provided header files (i.e. stdio.h) it’s recommended to specify path names that allow the compiler to be configured to search for header file.

C language example: #include <stdio.h>

12.2.2 Recommended implementation strategy for header files

It is recommended that header files be implemented as follows (examples for the C language are shown in parentheses):

 Each module (.c) file has a corresponding header (.h) file that defines the interfaces to that module. The header (.h) file should have the same name as the associated module (.c) file. (Caution: some compilers might inadvertently destroy a file by using automatically generated .bak files). This type of header file provides external declarations for global data types, global functions (function prototypes), and global structure templates, that are defined in the source file for the specific module. In other words, the specifications of the functions and data types that need to be visible outside of a module appear in its associated header file (which other modules will “include”). Private definitions that should be hidden from the external world are kept local by appearing only in the module (.c) file.

 One (or a few) header files can be used to group global definitions for a project or a subsystem, making it easier to locate global data types, constants, and macros (but not function prototypes or “externed” data).

12.2.3 Header file Guidelines

 Header files will not allocate variables, initialize data, or contain code.

 Header files can define global data types, constants, and macros. Multiple definitions of data types and structures should be avoided.

 While the use of global data should be generally avoided, a module that must “own” a global variable should allocate that variable. (It is generally useful to consider the one who writes to the global data as the owner.)

 The use of a single module to allocate all global data is generally discouraged.

12.3 Source File Layout Guideline

The specific contents of sections in a file may vary from language to language, but the following order should be used as a guideline for layout of a file:

 File or Module Header (defined later in this document)

 Include Definitions: Any header file includes should be next. Any non obvious reasons for the inclusion should be commented.

 Constant and Macro Definitions

 Data Type definitions, Function Prototypes, and Structure Templates

 Variable Definitions

 Subroutines

Note that all except the last two items can apply to header files.

12.4 File Naming Guideline

A consistent naming convention for files and for directories shall be developed and used on a per-project basis.

 A file naming convention makes project files easily distinguishable from other projects, and it helps associate different file types within the same project.

 Directories and subtrees can be used to link portions of a project together.

12.5 File Informational Headers

A File Header shall be placed at the beginning of each source file. Fields of the headers should never be deleted; non-applicable fields shall be marked “none”. Note that a software “module” (a logical grouping of related subroutines) may cross many files.

The File Header should include the following:

 Copyright Generic Company, 199x, All Rights Reserved. For internal use only.

 File Name

 Project Name

 Module Name

 Brief Description of purpose of file. Enough detail should be provided to give an overview of the module and how subroutines interact with each other. It should not restate information that is included in the function’s comment header.

 Revision History notes

 File-wide compiler dependencies

12.5.1 File Header

This is a C language example of a file header - a project specific coding standard that can be used as a template for any project. Projects may require additional specification or clarification beyond those detailed in the standards documents.

/***

* Copyright 199X, Generic Company, All rights reserved, For internal use only

*

* FILE:

* PROJECT:

* MODULE:

*

* Description:

*

* Notes:

*

* Compiler dependencies or special instructions:

*

* REVISION HISTORY

* Date:

By: Description:

*

***/

12.6 Program Unit Header

For each program unit (e.g. subroutine) in the file, a header should be inserted at or near the beginning of the declaration of the unit, as specified for the given language. The exact form of the header may vary somewhat according to the language used and the type of program unit, but should always include:

 Name - the name of the program unit

 Brief description of the purpose of the unit

 Parameters: Description of each parameter passed to the function.

 Return (If applicable)

 Notes - give commentary on the algorithm, efficiency evaluations, alternative methods, etc. Note that the purpose of this section is not to provide a general description of the code’s purpose and structure; this is provided by the Distributed Code Description, as described below.

 Programmers(s)

 Revision history, included for origin and each set of changes:

 Date of revision

 Name of programmer making change(s)

 Description of change(s), including reasons for change and any other statements of interest

Other information that should be considered for each program unit header include:

 Outputs: Changes to global conditions (states, machine outputs, global data, ...) not included in the parameters passed as part of the call to the function

 Subroutines called in support of this program unit.

 Global variables written and referenced by this program unit.

 Designer(s) or Reference to Design Document(SDDD).

 Tested By/Date: (Indicates any unit testing that was done for this program unit)

 Assumptions and limitations, including compiler, assembler, and machine dependencies - note any assumptions about the current processing state. It might be noted that it is assumed that a certain variable has been initialized, or that a certain variable has one of a certain subset of values. The section shall also point out any obstructions to reusability which are not made clear by the name of the subroutine. For instance, for a subroutine named “Is_Digit”, this section might note that it only works for the ASCII character set. This section should note any system limitations, e.g. execution of a unit may depend on low byte/ high byte ordering of a number in processor memory.

 Exception processing - describe any unusual actions taken by the unit, including its handling of invalid input data.

12.6.1 This is a C language example of a subroutine header:

/**

* NAME:

* Description:

*

* Parameters:(Note: Optional, Not needed if each parameter is described in

* the function declaration statement, as shown below this header)

*

* Returns:

* Outputs:

* Designer(s):/ Design Document:

* Programmer(s):

* Tested By:

Date:

* Assumptions and Limitation:

*

* Exception Processing:

*

* NOTES:

*

* REVISION HISTORY

* Date:

By:

Description:

*

**/

float my_function (int iParam1, /* this is a descripion of parameter #1 */

 float fParam2 /* This is a descripion of parameter #2 */)

13. Subroutines

13.1 Subroutine Scope Guideline

Repetitive sections of code should be made subroutines so that parallel maintenance of several copies of the same code can be avoided, and so that maintainers can be sure of the similarity of the passages. Whenever appropriate, sections of code which are almost the same, except for the identity of some variables, should be made subroutines with parameters to allow for the differing variables.

13.2 Subroutine Declaration Guidelines:

 Minimize scope by declaring subroutines used only within the module as “static”

 The subroutine’s return type should be declared (do not allow the compiler to select a default value).

 Each parameter type should be declared (do not allow the compiler to select a default value).

13.3 Subroutine Layout Guidelines:

The specific contents of sections in a subroutine may vary from language to language, but the following order should be used as a general guideline for layout of a subroutine:

 Subroutine Header

 Variable declarations

 Comments and Code (intermixed, using “Distributed Code Description”)

13.4 Subroutine Size Guideline

Subroutines shall be as long as is necessary to accomplish one independent, cohesive, decoupled function. Size guidelines which limit the number of lines of code, or limit the number of pages of text, are addressing an inconsequential aspect of subroutine design. However, the association between excessive length and the number of independent jobs being performed within a routine is probably a strong one. Review very closely long routines, and judge whether they are performing many tasks that are better parsed out to subordinate subroutines.

13.5 Parameter List Guideline

 If a subroutine parameter list is longer than one line, lines after the first one will be indented from the left margin so that the second parameter will be listed directly below the first parameter

 The list of the function parameters should have a definite order. The most conventional ordering of parameters is: Input, modified (input and output), and finally output parameters.

 A function that returns information via one or more of it’s parameters may return only status information in its name

 For complicated function calls (with multiple parameters) listing each parameter passed on a separate line with a short comment describing it’s function makes the function easier to comprehend.

 For complicated function calls, you can use a prefix for each of the parameters to clearly distinguish input, modify, and output parameters. For example: In_, Mod_, Out_ for input, modify, and output parameters respectively).

13.6 Variable Declaration Guidelines:

 The variable’s type should be declared (do not allow the compiler to select a default value).

 Only declare one variable per line.

14. Comments

14.1 “Distributed Code Description “

Note that there is no Code Description section in the Program Unit Header, even though such a section is usually a part headers of this sort. Instead, a Distributed Code Description shall be embedded throughout the code. Each logical passage of code -- typically, on the order of 5 to 15 lines, though some may be 1 line and some may be 100 lines -- shall be preceded by an internal comment describing the action of the code that follows. This will make the code easier to read, and will form a Distributed Code Description that will be easier to verify and maintain as the code is modified. This will also make a first-pass reading of the code much easier than reading the code alone, no matter how self-descriptive the code is. Internal comments should not simply restate the code, but should clarify the encoded data structures or algorithms at a more descriptive level than the code. Comments should also be used to describe alternative methods that were considered and abandoned, to prevent duplicate effort by maintainers.

14.2 Comment Block Standard:

Code is more readable when comments are presented in paragraph form prior to a block of code, rather than a line of comment for a line or two of code.

 Comments should be preceded by and followed by a single blank line

 Indent block comments to the same level as the block being described

 Highlight the comment block in a manor that clearly distinguishes it from the code

For example:

/*

============================

This is an example of a blocked comment that

is easily distinguished from the rest of this document,

and is easily edited.

============================

*/

14.3 In line comments:

Block comment should be the primary approach for commenting code, but where appropriate, In-line comments adding important information are also encouraged. For example:

int gStateFlag; /* This state variable is defined here, initialized in Main */

A comment shall accompany each definition of a constant, type, or variable, giving its purpose. The comment shall either be on the same line as the definition (to the right), or on the previous line(s).

14.4 Commenting control constructs

For constructs (such as “end if”) which close specific other structures (such as “if ConditionA”), a comment after the closing construct shall in certain circumstances note the identity of the opening construct. This shall be done if the opening and closing components are textually far apart from one another, or if they are part of a somewhat complex nesting of control structures. This may seem superfluous for short blocks, but is a lifesaver for long and many-nested passages.

while (indTotal < 1000)

 {

 Pristine, well-designed code, indented here

 } /* end while indTotal < 1000 */

15. Code Layout

15.1 One statement per line

 There shall normally be no more than one statement per line; this includes control statements such as “if” and “end” statements.

 When a single operation or expression is broken over several lines, break it between high-level components of the structure, not in the middle of a sub-component. Also, place operators at the ends of lines, rather than at the beginning of the next line, to make it clear at a glance that more is coming.

15.2 Indentation Guidelines

A consistent use of indentation makes code more readable and errors easier to detect.

 3 spaces is recommended per indent, but the exact number of blanks per indentation quantum may vary with the language.

 Statements that affect a block of code (i.e. more than one line of code) must be separated from the block in a way that clearly indicates the code it affects.

Use vertical alignment of operators and/or variables whenever this makes the meaning of the code clearer

C language example:

if ((Weather == CLOUDY) &&

 (Temperature == COLD) &&

 (LengthOfDay == SHORT))

 {

 Season = WINTER;

 State = ALASKA;

 }

else

 {

 Season = SUMMER;

 State = FLORIDA;

 } /* end if Weather == CLOUDY......*/

15.3 Brackets, Begin...End, and Delimiting Control Blocks

Nothing brings out the territorial and protective instinct in programmers like the issue of bracket, begin..end, or any delimiter placement. People generally consider correct the format they learned in school, yet there must be reason, organization, and consistency. Most importantly, it must allow for the quick separation of a condition from its resulting functional code (i.e. the code within the brackets), and the logical grouping together of that functional code with further indents and white space.

Any of the following three are acceptable. Note that the brackets are either considered part of the conditional statement (first and second example) or part of the resultant functional block (third example, called a pure-block scheme). Mixing bracket attachment (one part of the conditional, one part of the functional block, as in the fourth and fifth examples) is discouraged. In example 6, the bracket is not attached to either the conditional or the functional block.

recommended:

if (gTestFlag == TRUE)

 {

 Run_Machine_1();

 } /* end if gTestFlag is True */

not recommended: multiple conditionals confuse the first bracket placement.

if (gTestFlag == TRUE) {

 Run_Machine_1();

} /* end if gTestFlag is True */

wrong: first bracket is part of the conditional, but second bracket is part of the functional block.

if (gTestFlag == TRUE) {

 Run_Machine_1();

 } /* end if gTestFlag is True */

wrong again:

if (gTestFlag == TRUE)

 {

 Run_Machine_1();

} /* end if gTestFlag is True */

wrong: unnecessary second indentation.

if (gTestFlag == TRUE)

 {

 Run_Machine_1();

 } /* end if gTestFlag is True */

Another STRONGLY SUGGESTED standard is that all functional code following a conditional be delimited, even a single line. The following example illustrates why... the two lines of functional code after the conditional appear from indentation to both run. Only the first one does.

wrong:

if (gTestFlag == TRUE)

 Run_Machine_1();

 Write_Timestamp_To_Log();

The following is clear as to intent:

if (gTestFlag == TRUE)

 {

 Run_Machine_1();

 } /* end if gTestFlag is True */

Write_Tmestamp_To_Log();

16. Naming Convention for Identifiers (Variables, Constants, and Subroutines)

16.1 Summary table for Naming Convention:

This table summarizes the recommended use of underscores, upper/lower case, and Hungarian notation for naming identifiers.

	
	Upper/lower case
	Under-score
	Prefixes or Suffix
	Example

	Subroutines
	Mixed case separated by underscores

	yes
	Hungarian prefix for the return type
	iGet_Color()

	Constants, Macros, Enum Constants

	Upper case
	yes
	none
	COLOR_RED

	Types and User-type declarations (Structures, Enumerators, Unions)

	MixedCase
	no
	Suffix (Type, Struct, Enum, and Union)
	ColorType,

EmployeeStruct

	Variables
	MixedCase
	no
	Hungarian prefixes
	blStackIsUpdated

16.2 Select Clear and Meaningful Names

The most important consideration in naming a variable, constant, or subroutine is that the name fully and accurately describe the entity or action that the structure represents. Clear, complete, and meaningful names makes the code more readable and minimizes the need for comments. For example; suppose a subroutine called “Process_Input_Line” calls “Push_Input_Character.” If “Push_Input_Character” happens also to echo the input character, then either a different subroutine should be extracted (named “Echo_Input_Character”) and called by “Process_Input_Line”, or the name of “Push_Input_Character” should be changed to “Push_And_Echo_Input_Character”.

16.2.1 Naming Subroutines (verb and object)

 Names of procedures shall consist of a verb and (whenever appropriate) an object, such as “Push_Input_Character”. This will make both the action and the object of the action clear. Subroutine names such as “Subroutine_1” are discouraged.

A Hungarian Prefix should be used to identify the return type on functions that return a value:

e.g. iGet_Time(), blnEstablish_Communications(), etc.

16.2.2 Naming Constants, variables (noun)

Names of constants, variables, and functions shall be nouns, with or without modifiers (e.g., “Line”, “InputLine”, “NumInputLines”), with the exception of Boolean identifiers as noted below. Constants (variables whose values can not be changed during runtime) should be capitalized: MAX_LINES.

16.2.3 Naming Boolean identifiers (verb and ((object or adjective))

Each name of a Boolean constant, Boolean variable, or Boolean function shall consist of a verb and (whenever appropriate) an object or an adjective. As an example, if this rule were not followed, would the subroutine call “Black_King (Checker)” mean make Checker a black king, or report whether Checker is a black king? This Boolean function would be better named “blnIs_Black_King”. Note that the form “Is_Black” illustrates another appropriate construct. A subject for the verb may also be appropriate, as in a Boolean function named “blnStack_Is_Updated”.

16.2.4 Naming Types

If allowed by the language, the names of types should have a distinguishable prefix or suffix. It is recommended that all names of types end with the letters “Type” . Further, if the type exists solely to define variable “Xyz”, then the type shall be named “XyzType”. Furthermore, the name descriptor (or abbreviation) part of the type (i.e. “Xyz” part of “XyzType”) should be included in the name of any variable declared with that type. Likewise, Structures, Enumerators, Unions should have the suffix “Struct”, “Enum”, and “Union” respectively. Example:

struct type

 {

 integer iAddress;

 string strLastName;

 }

EmployeeDataStruct *EmployeeDataStructPtr; /*struct and ptr to struct name */

EmployeeDataStruct stEmployee;

EmployeeDataStructPtr pstEmployee; /*variable that is a ptr to the struct */

16.3 Use of upper/lower case and underscores to differentiate Subroutines, Variables, and Constants.

Program-specific identifiers shall be differentiated from reserved words by use of upper/lower/mixed case; the exact scheme for doing so shall vary with the language, but not from project to project.

Assume that the language that you are programming in, is case insensitive, even if it isn’t (as in C). This will prevent the creation of variables such as portnum, PortNum, and Portnum, which can in fact be three different variables performing three different functions... a very difficult thing to figure out and maintain.

16.3.1 Subroutines and Program Units:

Whenever appropriate for the language, names of program units shall contain underscores between words and use mixed upper and lower case letters (except for abbreviations).

16.3.2 Variables

Other sorts of identifiers (such as those for types, and variables) shall not contain underscores, and use upper case for the first letter in each unique word. For example; a Boolean function could be named “Stack_Is_Updated”, and a Boolean variable with a similar purpose could be named “StackIsUpdated”. This allows very differentiation between functions and variables. A variable “Color” can’t be confused with the function “color”.

 <<Note C++ exception>>

16.3.3 Macros and Constants

Fixed identifiers such as Macros and Constants shall contain underscores between words and use all UPPER case letters. For example; a constant that defines the maximum of a motor could be named “MAX_MOTOR_RPM”

16.3.4 Acronyms:

When Acronyms are used as part of a name in a mixed case situation, the acronym should generally remain capitalized. For example, if “FFT” is used as an abbreviation for “Fast Fourier Transform”, then a likely variable would be named “FFTName”, rather than “FftName. The project specific standard should specify which approach is more usable on the project, as consistency in an application is more important than a hard and fast rule.

16.4 Use of prefix (Hungarian) notations to differentiate the scope and type of a data variable

The Hungarian naming convention is a set of guidelines for naming variables and routines. The convention is widely used the C and Visual Basic languages. A modified Hungarian notation will be suggested.
The use of Hungarian Notation is strongly encouraged, but may vary in form on a per-project basis. If used, prefixes can vary from language to language and across applications. A list of the prefixes should to be defined as part of the project specific standards. A list of commonly used prefixes that should be used as a starting point or template for the project’s list will be included below.

16.4.1 Hungarian naming convention :

Variable and function names have the following structure:

<prefix><body><qualifier><suffix>

Prefixes

The prefix describes the type and the scope of the variable, as in iGetRecordNext and sGetNameFirst.
Body

The body of variable and routine names should use mixed case and should be as long as needed to describe their purpose. Function names should also begin with a verb, such as InitNameArray or CloseDialog.

Qualifiers

The qualifier is used to denote standard derivatives of a base variable or function, as in iGetRecordNext and sGetNameFirst.

Often related variables and routines are used to manage and manipulate a common object. In these cases it can be very helpful to use standard qualifiers to label the derivative variables and routines. Although putting the qualifier after the body of the name might seem a little awkward (as in sGetNameFirst, sGetNameLast instead of sGetFirstName, and so on), this practice will help order these names together in the Visual Basic editor routine lists, making the logic and structure of the application easier to understand.

Suffix

The suffix is the optional Visual Basic type char ($, %, #, and so on).
PREFIX TABLES:

The following table defines variable/function name prefixes that are based on Hungarian C. These must be used universally, even when Visual Basic suffixes (such as %, &, #, and so on) are also used.

16.4.2 Table of Common C-language prefixes:

	Type
	Prefix

	Boolean
	bl, bln

	char
	ch

	unsigned char
	uch

	short
	s

	unsigned short
	us

	long
	l

	unsigned long
	ul

	float (or single)
	f

	double
	d

	bit
	b

	byte
	by

	function
	fn

	array
	a

	pointer
	p

	string
	sz

	void
	v

	file pointer
	fp

	file descriptor
	fd

	array of characters
	ach

	pointer to a structure
	pst

16.4.3 Table of Common Visual Basic & Windows prefixes:
Prefix
Variable Use Description (precedes Control prefix and body)
	b
	Boolean (vb type = %)

	c
	Currency - 64 bits (vb type = @)

	d
	Double - 64 bit signed quantity (vb type = #)

	db
	Database

	ds
	Dynaset

	dt
	Date+Time (vb type = variant)

	f
	Float/Single - 32 bit signed floating point (vb type = !)

	h
	Handle (vb type = %)

	idx
	Index (vb type = %)

	l
	Long - 32 bit signed quantity (vb type = &)

	i
	Integer (sizeless, counter) (vb type = %)

	s
	String (vb type = $)

	u
	Unsigned - 16 bit unsigned quantity (must use &)

	ul
	Unsigned Long - 32 bit unsigned quantity (must use #)

	vnt
	Variant (big and ugly to discourage use and make sure it gets the reader's attention)

	w
	Word - 16 bit signed quantity (vb type = %)

	a
	Array

	
	User defined type

16.4.4 Table of Common prefixes for Visual Basic controls & Windows based objects:
Prefix
Control Type Description
	ani
	Animation button

	bed
	Pen Bedit

	cbo
	Combobox and dropdown Listbox

	chk
	Checkbox

	clp
	Picture Clip

	cmd
	Command Button

	com
	Communications

	ctr
	Control (Used within procs when the specific type is unknown)

	db
	ODBC Database

	dir
	Dir List Box

	dlg
	Visual Basic Pro Common Dialog

	drv
	Drive List Box

	ds
	ODBC Dynaset

	fil
	File List Box

	frm
	Form

	fra
	Frame

	gau
	Gauge

	gpb
	Group Push Button

	grd
	Grid

	hed
	Pen Hedit

	hsb
	Horizontal Scroll Bar

	img
	Image

	ink
	Pen Ink

	key
	Keyboard key status

	lbl
	Label

	lin
	Line

	lst
	Listbox

	mpm
	MAPI Message

	mps
	MAPI Session

	mci
	MCI

	mnu
	Menu

	opt
	Option Button

	ole
	Ole Client

	pic
	Picture

	pnl
	3d Panel

	shp
	Shape

	spn
	Spin Control

	txt
	Text/Edit Box

	tmr
	Timer

	vsb
	Vertical Scroll Bar

16.4.5 Prefix’s for new controls or objects

For new controls not listed above, try to come up with a unique 3-character prefix. However, it is more important to be clear than to stick to 3 characters. For derivative controls, such as an enhanced list box, extend the prefixes above so that there is no confusion about what control is really being used. For example, a control instance created from the Visual Basic Pro 1.0 3D Frame could use a prefix of fra3d to make sure there is no confusion over which control is really being used.
16.4.6 Use of prefix’s for Variable Scope

Prefix
Scope or Use (precedes Use prefix above)
	Scope
	Description
	Prefix

	Global
	Variable is valid only within any module in a project
	g (or unique prefix identifying the source module)

	Local
	Variable is valid only within the subroutine that it is defined
	none

	Module
	Variable is valid only within the module that it is defined
	m

	Public
	In Object Oriented languages, useable by all
	pub

	Protected
	In Object Oriented languages, useable by members of any class derived from the defining class
	prt

	Private
	In Object Oriented languages, useable by members only of the defining class
	prv

.

The following table defines common qualifiers and their standard meaning.

16.4.7 Table of Common Qualifiers

 Qualifier
Description (follows Body)
	First
	First element of a set.

	Last
	Last element of a set.

	Next
	Next element in a set.

	Prev
	Previous element in a set.

	Cur
	Current element in a set.

	Min
	Minimum value in a set.

	Max
	Maximum value in a set.

	Save
	Used to preserve another variable which must be reset later.

	Tmp
	A "scratch" variable whose scope is highly localized within the code. The value of a Tmp variable is usually only valid across a set of contiguous statements.

	Src
	Source. Frequently used in comparison and transfer routines.

	Dst
	Destination. Often used in conjunction with Source.

16.5 Abbreviations

An abbreviation shall only be considered if it saves a considerable number of characters (e.g., “FFT” for “Fast Fourier Transform” is acceptable, but “Snd” for “Send” is not), as long as the language does to restrict identifier lengths severely. An abbreviation list shall be created during the design phase of each project. However, smaller groups of programmers may create their own abbreviations for terms which are used within the domain of the code to which they are assigned; again, the use of these abbreviations shall be consistent. Any abbreviations which are on the list must be used by all programmers for any identifiers which include the corresponding phrase. For example, if series of procedures sends various types of messages using the identifiers Send_Hello_Msg, Send_Connect_Msg, and Send_Data_Msg, then the name of a new procedure in the series should not be Send_Disconnect_Message. To do otherwise simply encourages coding errors and frustrates text searches.

Common abbreviations - This is a list of commonly used abbreviations. It could be used as a starting point for a project’s abbreviation list:

	Alignment
	align

	average
	avg

	calibrate
	calib

	calibration
	calib

	channel
	chn

	coefficient
	coef

	column
	col

	control
	cntl

	controller
	cntl

	degrees
	deg

	detector
	det

	high
	hi

	length
	len

	low
	lo

	maximum
	max

	message
	msg

	minimum
	minm

	minutes
	min

	number
	numb

	quadrant
	quad

	seconds
	secs

	tolerance
	tol

	unit-under-test
	UUT

17. Misc. Rules for Coding

17.1 Constants and Macros

17.1.1 Use constants and macros instead of hard coded literal values

“Magic numbers” (hard-coded literal values) are discouraged. They often make the author’s intent unclear and make global changing of a value undependable

If supported by the language,

 Literal values shall be avoided in code statements; rather, a symbolic constant for each shall be defined reflecting its intent. 0 should not be assumed to mean “OFF”, a symbolic constant OFF should be defined to be equal to 0.

 The numeric literals 0 and 1 shall not be used as Boolean constants. Booleans are not to be treated as integers.

 Whenever different constants must have fixed relationships and whenever allowed by the language, the fixed relationships shall be forced to hold true. For instance, if ConstantB must be twice the value of ConstantA, define ConstantB as being equal to 2 * ConstantA.

The exceptions to this rule include

 The numeric literals 0 and 1 (where their use is to initialize, increment or to test).

 Certain fixed-purpose character literals (e.g., ‘ ‘ will always be a blank), and strings giving messages or labels.

17.1.2 Only Define constants and macros once

Constants and macros shall not be defined in more than one textual location in the program, even if the multiple definitions are exactly the same.

17.1.3 Place parenthesis around each macro parameters

This will avoid unexpected precedence problems when the macro is expanded into code.

C language example: #define PRODUCT(a , b) = ((a) * (b)), not (a * b)

EXAMPLES:

Wrong:

if (fKilnTemperature < 92.46)

Correct:

#define MAX_KILN_TEMP (92.46)

if (fKilnTemperature < MAX_KILN_TEMP)

There are times when expected modifiability would dictate that constants be placed in a dependable area (e.g. in the global header file, etc.) for easy access and changing.

17.2 Global Data Guidelines

 Global data is generally to be avoided. Parameters are the preferred method of communication among subroutines.

 The scope of module-level data should be limited to the module (i.e. use the static storage class specifier to declare functions and data local to the file, rather than declaring them as global).

 Any variable whose initial value is important should be initialized with executable code, don’t initialize static data at time of allocation.

 Performance considerations sometimes suggest the use of “static” variables in interrupt routines to avoid overuse of system resources. In general, these variables should not be global.

17.3 Error Handling

 Functions that can fail (i.e. file I/O) should always return a success or error as a return code parameter.

 Any time a subroutine calls a function that returns an error condition, the error condition should be tested for and acted on in accordance with the error handling conventions specified in the projects SDDD. Error recovery should be handled in the routine that is responsible for the domain in which the error occurs (e.g. A file error should not be passed up from file_IO() to Main for handling).

17.4 Conditionals and comparisons

Always test floating-point numbers as <= or >= relational operator, never use exact comparisons (= = or !=).

No assumptions shall be made about the value of uninitialized variables, unless the language definition makes a clear statement about this.

Never use implied processing.... always state clearly a conditional’s intent:

Wrong (note gTestFlag):

if (gblnTestFlg)

 {

 do_this();

 } /* end if gblnTestFlg */

Correct:

if (gblnTestFlg == TRUE)

 {

 do_this();

 } /* end if gblnTestFlg */

17.5 Program Flow

Interrupt handlers shall perform minimal processing, and shall be meticulously commented.

In high-level languages, multiple exits from a unit are allowed if that avoids excessive control structure nesting.

Multiple entries into a unit are not allowed.

17.6 Binding time of variables and values

When data files are accessed in a tree-structured directory environment, the names of the file directories shall not be hardwired in the code; whenever possible, environment variables or some similar mechanism shall be used to provide exact directory names dynamically. The same applies to the names of nodes which are accessed in a network. (see section 5.4 on constants and coding style).

17.7 Go-to’s, pointers, and issues of clarity

Go-tos are not to be “avoided at all costs”. It is, instead, serpentine code that needs to be avoided. Simplicity and clarity should override most other design decisions. A go-to, in particular, is a powerful tool when used as a direct, no-nonsense jump under well-stated conditions, and can very closely follow problem-space behavior if used with some planning and forethought (Ada, a language designed from scratch by smart French people, contains a goto keyword). On the other hand, the indirection of a pointer tends to be a computer-space construct, that is often confusing and - if honesty should prevail - unnecessary (Java, the latest geek programming language, does not allow the use of pointers).

Other clarity-based suggestions:

Use case statements instead of nested ifs, use arrays instead of linked lists, optimize through solid design rather than bit-tuning, get a faster CPU instead of writing assembler, pay for the extra memory, buy code if it’s available.

17.8 Strive to develop clear code

Engineers should strive to develop code that is both clear, and efficient in its use of CPU time, memory, and other resources. However, when efficiency and clarity conflict, then clarity should take strong precedence over resource stinginess, unless it is proven that using the clear but less efficient method impairs the program critically. Micro-optimizations to small areas of code are especially to be avoided if they impair clarity in any way, since it is generally only the program’s overall algorithms that affect resource utilization significantly.

17.9 Use libraries when available

Whenever library routines, graphics packages, compiler/assembler features, or other sorts of utilities are helpful to the program, they should be utilized. The danger of losing the access to the utility if the hardware, the compiler/assembler, or the operating system should change is generally overridden by the savings in software creation time. In those cases in which there is no significant savings of software creation time, it is preferable to use the standard language features, for portability’s sake.

17.10 Type casting integer and float variables makes code more portable

If the language allows (as with C’s “typedef” or Ada’s subtypes), all integer and floating types which are important in the program should be defined as new types within the program. This will allow for easy correction if the code is ported to a different compiler or machine with different default work sizes. This also often allows for much better type checking, depending on the language.

17.11 Compiler dependent code should include tests

Whenever the code makes assumptions about how the compiler represents data structures, the code should include a test (if possible) to determine whether the assumption holds true, and display a prominent message and abort the program if the test fails. This will notify future maintainers who may unwittingly spoil the assumption, or who may port the program to a different compiler and/or machine.

17.12 Use ASCII files for runtime or machine dependent constants and macros

Whenever possible, values which remain static throughout runtime but which can be used to tune or modify the program shall be read from an ASCII file at the start of runtime, to allow for dynamic modification without recompilation or relinking. Note that in some cases, the program design may specify features to support dynamic tuning or modification of some of these values (for example, machine setpoints).

18. Modularization and Information Hiding

18.1 Information Hiding , domain, and scope of variables

The use of information hiding is mandatory, to the extent allowed by the given language. The overall program shall be divided into various domains of interest, and different divisions of the code shall deal with different domains. The code that deals with a given domain shall protect, to the greatest extent possible in the given language, its data, its data structure design, and its internal operations on the data. It shall “export” to outside code modules only the operations required by the outside modules. The exported operations shall be presented to outside modules at a level of abstraction such that the internal implementation is not detectable.

18.2 Low Coupling , High Cohesion, and Clean interfaces

The quality of the modularization of a program depends on the linkage between modules, called coupling, and the binding within a module, called cohesion. Ideally, a module will have low coupling with other modules and a high level of cohesion with itself.

It may not be easy to attain low coupling, high cohesion, and clean interfaces at the same time, but the final product will be cleaner and easier to maintain because of this extra effort.

18.3 Cohesion

Cohesion refers to the relation of the statements within a routine. There are different ways in which statements can be related. Functional cohesion, which means that the statements perform a single purpose or goal, is the strongest type of binding and the ideal to strive for.1
18.4 Coupling

Coupling refers to the degree to which two routines are dependent on each other, or the degree of difficulty one would have trying to change one routine without having to change the other. Data coupling would depend on the number and type of parameters passed into or out of a routine. Loose data coupling (low dependence between modules) is the ideal coupling method.1
18.5 Clean Interface

Clean interfaces refers to clear, standard and defined lines of communication between routines. In many languages, this is done by passing parameters. It is important to try to keep communication between procedures and functions confined to parameters, i.e. not referencing global data. If this is done and all non-output parameters are passed by value (so that their value isn't mistakenly changed by a routine), then each routine will be isolated from what happens in other parts of the program. Each routine can then be tested and debugged and integration should then run smoothly.

18.6 Minimize scope of variables

Whenever allowed by the language, all constants, types, and variables shall be declared only within the scope in which they need to be known.

Data items must not be accessed or altered by some obscure process. Data should be local if at all possible. "Pass through" parameters (or "Tramp Data"), whose only function is to pass data down to called routines creates readability and maintainability problems. Each data linkage makes integration problems more probable.

� Turner, R., Software Engineering Methodology, Reston Publishing Company, Inc., 1984

� Plum, T., C Programming Guidelines, Plum Hall, Inc., 1984

